Source code for eoreader.products.optical.optical_product

# -*- coding: utf-8 -*-
# Copyright 2024, SERTIT-ICube - France, https://sertit.unistra.fr/
# This file is part of eoreader project
#     https://github.com/sertit/eoreader
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Super class for optical products """
import logging
from abc import abstractmethod
from datetime import datetime
from enum import unique
from typing import Union

import geopandas as gpd
import numpy as np
import rasterio
import xarray as xr
from rasterio import crs as riocrs
from rasterio.enums import Resampling
from sertit import AnyPath, files, path, rasters
from sertit.misc import ListEnum
from sertit.types import AnyPathStrType, AnyPathType

from eoreader import EOREADER_NAME, cache, utils
from eoreader.bands import (
    GREEN,
    BandNames,
    SpectralBandMap,
    is_spectral_band,
    is_thermal_band,
    to_str,
)
from eoreader.keywords import CLEAN_OPTICAL, TO_REFLECTANCE
from eoreader.products.product import OrbitDirection, Product, SensorType

LOGGER = logging.getLogger(EOREADER_NAME)


[docs] @unique class CleanMethod(ListEnum): """ Cleaning method for optical bands """ CLEAN = "clean" """ Clean everything that can be cleaned (nodata, saturated pixels, cosmic rays, broken detectors...). Default method but slowest. """ NODATA = "nodata" """ Clean only the detector nodata (nan outside the detector footprint). A bit faster than the previous method. """ RAW = "raw" """ Return raw band without any cleaning (fastest method) """
[docs] @unique class RawUnits(ListEnum): """ Units of the raw band """ DN = "digital number" """ Digital Number """ RAD = "radiance" """ Radiance """ REFL = "reflectance" """ Reflectance """ NONE = "none" """ No relevant unit (i.e. SEAMLESS bands for DIMAP or visualisation bands) """
DEF_CLEAN_METHOD = CleanMethod.NODATA
[docs] class OpticalProduct(Product): """Super class for optical products"""
[docs] def __init__( self, product_path: AnyPathStrType, archive_path: AnyPathStrType = None, output_path: AnyPathStrType = None, remove_tmp: bool = False, **kwargs, ) -> None: self._has_cloud_cover = False self._raw_units = None # Initialization from the super class super().__init__(product_path, archive_path, output_path, remove_tmp, **kwargs) # For optical products, we assume the resolution is the same as the pixel size self.resolution = self.pixel_size
def _pre_init(self, **kwargs) -> None: """ Function used to pre_init the products (setting needs_extraction and so on) """ # They may be overloaded if not self.bands: self.bands = SpectralBandMap() self.sensor_type = SensorType.OPTICAL def _post_init(self, **kwargs) -> None: """ Function used to post_init the products (setting sensor type, band names and so on) """ self._set_product_type()
[docs] def get_default_band(self) -> BandNames: """ Get default band: :code:`GREEN` for optical data as every optical satellite has a GREEN band. .. code-block:: python >>> from eoreader.reader import Reader >>> path = r"S2A_MSIL1C_20200824T110631_N0209_R137_T30TTK_20200824T150432.SAFE.zip" >>> prod = Reader().open(path) >>> prod.get_default_band() <SpectralBandNames.GREEN: 'GREEN'> Returns: str: Default band """ return GREEN
[docs] def get_default_band_path(self, **kwargs) -> AnyPathType: """ Get default band (:code:`GREEN` for optical data) path. .. code-block:: python >>> from eoreader.reader import Reader >>> path = r"S2A_MSIL1C_20200824T110631_N0209_R137_T30TTK_20200824T150432.SAFE.zip" >>> prod = Reader().open(path) >>> prod.get_default_band_path() 'zip+file://S2A_MSIL1C_20200824T110631_N0209_R137_T30TTK_20200824T150432.SAFE.zip!/S2A_MSIL1C_20200824T110631_N0209_R137_T30TTK_20200824T150432.SAFE/GRANULE/L1C_T30TTK_A027018_20200824T111345/IMG_DATA/T30TTK_20200824T110631_B03.jp2' Args: kwargs: Additional arguments Returns: AnyPathType: Default band path """ default_band = self.get_default_band() return self.get_band_paths([default_band], **kwargs)[default_band]
[docs] @cache def crs(self) -> riocrs.CRS: """ Get UTM projection of the tile .. code-block:: python >>> from eoreader.reader import Reader >>> path = r"S2A_MSIL1C_20200824T110631_N0209_R137_T30TTK_20200824T150432.SAFE.zip" >>> prod = Reader().open(path) >>> prod.crs() CRS.from_epsg(32630) Returns: rasterio.crs.CRS: CRS object """ band_path = self.get_default_band_path() with rasterio.open(str(band_path)) as dst: utm = dst.crs return utm
[docs] @cache def extent(self) -> gpd.GeoDataFrame: """ Get UTM extent of the tile .. code-block:: python >>> from eoreader.reader import Reader >>> path = r"S2A_MSIL1C_20200824T110631_N0209_R137_T30TTK_20200824T150432.SAFE.zip" >>> prod = Reader().open(path) >>> prod.extent() geometry 0 POLYGON ((309780.000 4390200.000, 309780.000 4... Returns: gpd.GeoDataFrame: Extent in UTM """ # Get extent return rasters.get_extent(self.get_default_band_path()).to_crs(self.crs())
[docs] def get_existing_bands(self) -> list: """ Return the existing band. .. code-block:: python >>> from eoreader.reader import Reader >>> path = r"S2A_MSIL1C_20200824T110631_N0209_R137_T30TTK_20200824T150432.SAFE.zip" >>> prod = Reader().open(path) >>> prod.get_existing_bands() [<SpectralBandNames.CA: 'COASTAL_AEROSOL'>, <SpectralBandNames.BLUE: 'BLUE'>, <SpectralBandNames.GREEN: 'GREEN'>, <SpectralBandNames.RED: 'RED'>, <SpectralBandNames.VRE_1: 'VEGETATION_RED_EDGE_1'>, <SpectralBandNames.VRE_2: 'VEGETATION_RED_EDGE_2'>, <SpectralBandNames.VRE_3: 'VEGETATION_RED_EDGE_3'>, <SpectralBandNames.NIR: 'NIR'>, <SpectralBandNames.NNIR: 'NARROW_NIR'>, <SpectralBandNames.WV: 'WATER_VAPOUR'>, <SpectralBandNames.CIRRUS: 'CIRRUS'>, <SpectralBandNames.SWIR_1: 'SWIR_1'>, <SpectralBandNames.SWIR_2: 'SWIR_2'>] Returns: list: List of existing bands in the products """ return [name for name, nb in self.bands.items() if nb]
[docs] def get_existing_band_paths(self) -> dict: """ Return the existing band paths (orthorectified if needed). .. code-block:: python >>> from eoreader.reader import Reader >>> path = r"S2A_MSIL1C_20200824T110631_N0209_R137_T30TTK_20200824T150432.SAFE.zip" >>> prod = Reader().open(path) >>> prod.get_existing_band_paths() { <SpectralBandNames.CA: 'COASTAL_AEROSOL'>: 'zip+file://S2A_MSIL1C_20200824T110631_N0209_R137_T30TTK_20200824T150432.SAFE.zip!/S2A_MSIL1C_20200824T110631_N0209_R137_T30TTK_20200824T150432.SAFE/GRANULE/L1C_T30TTK_A027018_20200824T111345/IMG_DATA/T30TTK_20200824T110631_B01.jp2', ..., <SpectralBandNames.SWIR_2: 'SWIR_2'>: 'zip+file://S2A_MSIL1C_20200824T110631_N0209_R137_T30TTK_20200824T150432.SAFE.zip!/S2A_MSIL1C_20200824T110631_N0209_R137_T30TTK_20200824T150432.SAFE/GRANULE/L1C_T30TTK_A027018_20200824T111345/IMG_DATA/T30TTK_20200824T110631_B12.jp2' } Returns: dict: Dictionary containing the path of each queried band """ existing_bands = self.get_existing_bands() return self.get_band_paths(band_list=existing_bands)
def _to_reflectance( self, band_arr: xr.DataArray, band_path: AnyPathType, band: BandNames, **kwargs, ) -> xr.DataArray: """ Converts band to reflectance Args: band_arr (xr.DataArray): Band array to convert band_path (AnyPathType): Band path band (BandNames): Band to read **kwargs: Other keywords Returns: xr.DataArray: Band in reflectance """ raise NotImplementedError def _open_bands( self, band_paths: dict, pixel_size: float = None, size: Union[list, tuple] = None, **kwargs, ) -> dict: """ Open bands from disk. Args: band_paths (dict): Band dict: {band_enum: band_path} pixel_size (float): Band pixel size in meters size (Union[tuple, list]): Size of the array (width, height). Not used if pixel_size is provided. kwargs: Other arguments used to load bands Returns: dict: Dictionary {band_name, band_xarray} """ # Open bands and get array (resampled if needed) band_arrays = {} for band, band_path in band_paths.items(): # Read band LOGGER.debug(f"Read {band.name}") band_arr = self._read_band( band_path, band=band, pixel_size=pixel_size, size=size, **kwargs ) if not pixel_size: pixel_size = band_arr.rio.resolution()[0] clean_band_path = self._get_clean_band_path( band, pixel_size=pixel_size, writable=True, **kwargs ) # If raw data, clean it ! if AnyPath(band_path).name != clean_band_path.name: # Clean pixels cleaning_method = CleanMethod.from_value( kwargs.get(CLEAN_OPTICAL, DEF_CLEAN_METHOD) ) if cleaning_method == CleanMethod.RAW: pass elif cleaning_method == CleanMethod.NODATA: LOGGER.debug(f"Manage nodata for band {band.name}") band_arr = self._manage_nodata(band_arr, band=band, **kwargs) else: LOGGER.debug(f"Manage invalid pixels for band {band.name}") band_arr = self._manage_invalid_pixels( band_arr, band=band, **kwargs ) band_arr.attrs["cleaning_method"] = cleaning_method.value # Manage reflectance # (after cleaning -> don't alter pixel value before managing nodata) if kwargs.get(TO_REFLECTANCE, True): LOGGER.debug(f"Converting {band.name} to reflectance") band_arr = self._to_reflectance(band_arr, band_path, band) # b_min = band_arr.min().data # if b_min < 0: # LOGGER.debug( # f"Reflectance array has negative values ({b_min} < 0): clipping negative reflectances to 0." # ) # Negative reflectances should be discarded: https://labo.obs-mip.fr/multitemp/can-surface-reflectance-be-negative # NB: Reflectances > 1 are valid, see https://forum.step.esa.int/t/toa-range-in-sentinel-2-images-between-0-an-1/3168 band_arr = band_arr.clip(min=0, keep_attrs=True) # Write on disk try: utils.write( band_arr.rename(f"{to_str(band)[0]} CLEAN"), clean_band_path ) except Exception: # Not important if we cannot write it LOGGER.debug(f"Cannot write {clean_band_path} on disk.") # Save band array band_arrays[band] = band_arr return band_arrays @abstractmethod def _read_band( self, band_path: AnyPathType, band: BandNames = None, pixel_size: Union[tuple, list, float] = None, size: Union[list, tuple] = None, **kwargs, ) -> xr.DataArray: """ Read band from disk. .. WARNING:: Invalid pixels are not managed here Args: band_path (AnyPathType): Band path band (BandNames): Band to read pixel_size (Union[tuple, list, float]): Size of the pixels of the wanted band, in dataset unit (X, Y) size (Union[tuple, list]): Size of the array (width, height). Not used if pixel_size is provided. kwargs: Other arguments used to load bands Returns: xr.DataArray: Band xarray """ raise NotImplementedError @abstractmethod def _manage_invalid_pixels( self, band_arr: xr.DataArray, band: BandNames, **kwargs ) -> xr.DataArray: """ Manage invalid pixels (Nodata, saturated, defective...) Args: band_arr (xr.DataArray): Band array band (BandNames): Band name as an SpectralBandNames kwargs: Other arguments used to load bands Returns: xr.DataArray: Cleaned band array """ raise NotImplementedError @abstractmethod def _manage_nodata( self, band_arr: xr.DataArray, band: BandNames, **kwargs ) -> xr.DataArray: """ Manage only nodata pixels Args: band_arr (xr.DataArray): Band array band (BandNames): Band name as an SpectralBandNames kwargs: Other arguments used to load bands Returns: xr.DataArray: Cleaned band array """ raise NotImplementedError @staticmethod def _set_nodata_mask(band_arr: xr.DataArray, mask: np.ndarray) -> xr.DataArray: """ Create the correct xarray with well positioned nodata Args: band_arr (xr.DataArray): Band array mask (np.ndarray): Mask array Returns: (xr.DataArray): Corrected band array """ # Binary mask if mask.dtype != np.uint8: mask = mask.astype(np.uint8) if len(mask.shape) < len(band_arr.shape): mask = np.expand_dims(mask, axis=0) # Set masked values to nodata band_arr_nodata = band_arr.where(mask == 0) # Where sadly drops the encoding dict... band_arr_nodata.rio.update_encoding(band_arr.encoding, inplace=True) return band_arr_nodata
[docs] @abstractmethod @cache def get_mean_sun_angles(self) -> (float, float): """ Get Mean Sun angles (Azimuth and Zenith angles) .. code-block:: python >>> from eoreader.reader import Reader >>> path = r"S2A_MSIL1C_20200824T110631_N0209_R137_T30TTK_20200824T150432.SAFE.zip" >>> prod = Reader().open(path) >>> prod.get_mean_sun_angles() (149.148155074489, 32.6627897525474) Returns: (float, float): Mean Azimuth and Zenith angle """ raise NotImplementedError
[docs] @cache def get_mean_viewing_angles(self) -> (float, float, float): """ Get Mean Viewing angles (azimuth, off-nadir and incidence angles) .. code-block:: python >>> from eoreader.reader import Reader >>> path = r"S2A_MSIL1C_20200824T110631_N0209_R137_T30TTK_20200824T150432.SAFE.zip" >>> prod = Reader().open(path) >>> prod.get_mean_viewing_angles() Returns: (float, float, float): Mean azimuth, off-nadir and incidence angles """ return None, None, None
def _compute_hillshade( self, dem_path: str = "", pixel_size: Union[float, tuple] = None, size: Union[list, tuple] = None, resampling: Resampling = Resampling.bilinear, ) -> AnyPathType: """ Compute Hillshade mask Args: dem_path (str): DEM path, using EUDEM/MERIT DEM if none pixel_size (Union[float, tuple]): Pixel size in meters. If not specified, use the product pixel size. size (Union[tuple, list]): Size of the array (width, height). Not used if pixel_size is provided. resampling (Resampling): Resampling method Returns: AnyPathType: Hillshade mask path """ # Warp DEM warped_dem_path = self._warp_dem(dem_path, pixel_size, size, resampling) # Get Hillshade path hillshade_name = ( f"{self.condensed_name}_HILLSHADE_{path.get_filename(dem_path)}.tif" ) hillshade_path, hillshade_exists = self._get_out_path(hillshade_name) if hillshade_exists: LOGGER.debug( "Already existing hillshade DEM for %s. Skipping process.", self.name ) else: LOGGER.debug("Computing hillshade DEM for %s", self.name) # Get angles mean_azimuth_angle, mean_zenith_angle = self.get_mean_sun_angles() # Compute hillshade hillshade = rasters.hillshade( warped_dem_path, mean_azimuth_angle, mean_zenith_angle ) utils.write(hillshade, hillshade_path) return hillshade_path @abstractmethod def _open_clouds( self, bands: list, pixel_size: float = None, size: Union[list, tuple] = None, **kwargs, ) -> dict: """ Open cloud files as xarrays. Args: bands (list): List of the wanted bands pixel_size (int): Band pixel size in meters size (Union[tuple, list]): Size of the array (width, height). Not used if pixel_size is provided. kwargs: Additional arguments Returns: dict: Dictionary {band_name, band_xarray} """ raise NotImplementedError def _load_clouds( self, bands: list, pixel_size: float = None, size: Union[list, tuple] = None, **kwargs, ) -> dict: """ Load cloud files as xarrays. Args: bands (list): List of the wanted bands pixel_size (int): Band pixel size in meters size (Union[tuple, list]): Size of the array (width, height). Not used if pixel_size is provided. kwargs: Additional arguments Returns: dict: Dictionary {band_name, band_xarray} """ band_dict = {} if bands: # First, try to open the cloud band written on disk bands_to_load = [] for band in bands: cloud_path = self._construct_band_path( band, pixel_size, size, writable=False, **kwargs ) if cloud_path.is_file(): band_dict[band] = utils.read(cloud_path) else: bands_to_load.append(band) # Then load other bands that haven't been loaded before loaded_bands = self._open_clouds(bands_to_load, pixel_size, size, **kwargs) # Write them on disk for band_id, band_arr in loaded_bands.items(): cloud_path = self._construct_band_path( band_id, pixel_size, size, writable=True, **kwargs ) utils.write(band_arr, cloud_path) # Merge the dict band_dict.update(loaded_bands) return band_dict def _create_mask( self, xda: xr.DataArray, cond: np.ndarray, nodata: np.ndarray ) -> xr.DataArray: """ Create a mask from a conditional array and a nodata mask. Args: xda (xr.DataArray): xarray to retrieve attributes cond (np.ndarray): Conditional array nodata (np.ndarray): Nodata mask Returns: xr.DataArray: Mask as xarray """ # Create mask mask = xda.copy(data=np.where(cond, self._mask_true, self._mask_false)) # Set nodata to mask mask = mask.where(nodata == 0) return mask def _get_clean_band_path( self, band: BandNames, pixel_size: float = None, writable: bool = False, **kwargs, ) -> AnyPathType: """ Get clean band path. The clean band is the opened band where invalid pixels have been managed. Args: band (BandNames): Wanted band pixel_size (float): Band pixel size in meters writable (bool): True if we want the band folder to be writeable kwargs: Additional arguments Returns: AnyPathType: Clean band path """ cleaning_method = CleanMethod.from_value( kwargs.get(CLEAN_OPTICAL, DEF_CLEAN_METHOD) ) # Manage multi resolution bands opened with native resolution (such as PAN in Landsat) if pixel_size is None: pixel_size = self.bands[band].gsd res_str = self._pixel_size_to_str(pixel_size) # Radiometric processing rad_proc = "" if kwargs.get(TO_REFLECTANCE, True) else "_as_is" # Window name window = kwargs.get("window") win_suffix = "" if window is not None: if path.is_path(window): win_suffix = path.get_filename(window) elif isinstance(window, gpd.GeoDataFrame): win_suffix = window.attrs.get("name") if not win_suffix: win_suffix = f"win{files.hash_file_content(str(window))}" win_suffix += "_" return self._get_band_folder(writable).joinpath( f"{self.condensed_name}_{band.name}_{res_str.replace('.', '-')}_{win_suffix}{cleaning_method.value}{rad_proc}.tif", ) @cache def _sun_earth_distance_variation(self) -> float: """ Correction for the Sun-Earth distance variation It utilises the inverse square law of irradiance, under which, the intensity (or irradiance) of light radiating from a point source is inversely proportional to the square of the distance from the source. - t is the Julian Day corresponding to the acquisition date (reference day: 01/01/1950). - 0.01673 is the Earth orbit eccentricity. - 0.0172 is the Earth angular velocity (radians/day). See `here <https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-1c/algorithm>`_ for more information. Returns: float: Sun-Earth distance variation """ # julian_date is the Julian Day corresponding to the acquisition date (reference day: 01/01/1950). ref_julian_date = datetime(year=1950, month=1, day=1) julian_date = (self.date - ref_julian_date).days + 1 # Compute Sun-Earth distance variation return 1 / (1 - 0.01673 * np.cos(0.0172 * (julian_date - 2))) ** 2
[docs] @cache def get_cloud_cover(self) -> float: """ Get cloud cover as given in the metadata .. code-block:: python >>> from eoreader.reader import Reader >>> path = r"S2A_MSIL1C_20200824T110631_N0209_R137_T30TTK_20200824T150432.SAFE.zip" >>> prod = Reader().open(path) >>> prod.get_cloud_cover() 55.5 Returns: float: Cloud cover as given in the metadata """ LOGGER.warning( f"No cloud cover available for {self.constellation.value} data !" ) return 0.0
def _update_attrs_constellation_specific( self, xarr: xr.DataArray, bands: list, **kwargs ) -> xr.DataArray: """ Update attributes of the given array (constellation specific) Args: xarr (xr.DataArray): Array whose attributes need an update bands (list): Array name (as a str or a list) Returns: xr.DataArray: Updated array/dataset """ has_spectral_bands = [is_spectral_band(band) for band in bands] # Do not add this if one non-spectral bands exists if all(has_spectral_bands): if kwargs.get(TO_REFLECTANCE, True): has_thermal = [is_thermal_band(band) for band in bands] if all(has_thermal): xarr.attrs["radiometry"] = "brightness temperature" elif any(has_thermal): xarr.attrs["radiometry"] = "reflectance and brightness temperature" else: xarr.attrs["radiometry"] = "reflectance" else: xarr.attrs["radiometry"] = "as is" # Add this if at least one spectral bands exists if any(has_spectral_bands): if self._has_cloud_cover: xarr.attrs["cloud_cover"] = self.get_cloud_cover() return xarr
[docs] @cache def get_orbit_direction(self) -> OrbitDirection: """ Get cloud cover as given in the metadata .. code-block:: python >>> from eoreader.reader import Reader >>> path = r"S2A_MSIL1C_20200824T110631_N0209_R137_T30TTK_20200824T150432.SAFE.zip" >>> prod = Reader().open(path) >>> prod.get_orbit_direction().value "DESCENDING" Returns: OrbitDirection: Orbit direction (ASCENDING/DESCENDING) """ # All optical satellite are descending by default return OrbitDirection.DESCENDING
def _to_repr_constellation_specific(self) -> list: """ Representation specific to the constellation Returns: list: Representation list (constellation specific) """ repr_str = [] if self._has_cloud_cover: repr_str.append(f"\tcloud cover: {self.get_cloud_cover()}") if self.tile_name is not None: repr_str.append(f"\ttile name: {self.tile_name}") return repr_str