Removing clouds#
Let’s use EOReader with optical data, in order to remove clouds from brightness temperature measurements
Imports#
import os
from eoreader.reader import Reader
from eoreader.bands import TIR_1, CLOUDS
Open the product#
First, open a Landsat-8 OLI-TIRS
collection 2 product.
path = os.path.join("/home", "data", "DATA", "PRODS", "LANDSATS_COL2", "LC08_L1TP_200030_20201220_20210310_02_T1.tar")
reader = Reader()
prod = reader.open(path)
prod
eoreader.LandsatProduct 'LC08_L1TP_200030_20201220_20210310_02_T1'
Attributes:
condensed_name: 20201220T104856_L8_200030_OLI_TIRS
path: /home/data/DATA/PRODS/LANDSATS_COL2/LC08_L1TP_200030_20201220_20210310_02_T1.tar
constellation: Landsat-8
sensor type: Optical
product type: L1
default pixel size: 30.0
default resolution: 30.0
acquisition datetime: 2020-12-20T10:48:56
band mapping:
COASTAL_AEROSOL: 1
BLUE: 2
GREEN: 3
RED: 4
NIR: 5
NARROW_NIR: 5
CIRRUS: 9
SWIR_1: 6
SWIR_2: 7
THERMAL_IR_1: 10
THERMAL_IR_2: 11
PANCHROMATIC: 8
needs extraction: False
cloud cover: 16.36
tile name: 200030
Load clouds and TIR band#
# Load those bands as a dict of xarray.DataArray
bands = prod.load([TIR_1, CLOUDS])
bands[TIR_1].plot(cmap="viridis")
<matplotlib.collections.QuadMesh at 0x7f96247044d0>
bands[CLOUDS].plot()
<matplotlib.collections.QuadMesh at 0x7f962479c550>
Remove clouds from TIR band#
cloud_free = bands[TIR_1].where(bands[CLOUDS] == 0)
cloud_free.plot(cmap="viridis")
<matplotlib.collections.QuadMesh at 0x7f962462c550>